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Introduction

In the first part of this lab, you will analyze the motion of microscopic spheres suspended in a

solution. The quantitative analysis will result in a measurement of Avogadro’s number NA. The

the second part of the lab, you will investigate the equilibrium distribution of the particle suspension

to extract a second value for NA. The key part of the experiment setup is the same for both parts

of the experiment. As shown schematically in Fig. 1, the setup consists of a microscope slide with

an indentation ground into it. The indentation is filled with a suspension of particles using an

eyedropper and then covered with a coverslip (without trapping air bubbles). The suspension is

latex spheres with a diameter of d = (1.02± 0.02) µm in a saline (saltwater) solution. The particles

are viewed using a microscope equipped with a digital camera. You will record and analyze videos

of the particle motion in part 1 of the experiment. In part 2, you will analyze digital images of the

particle distribution. An example recording of the particle motion in the suspension has be posted

to YouTube:

https://www.youtube.com/watch?v=iCaP9PCrr_k

Figure 1: Schematic diagram of the particle suspension loaded into a cell created using a ground
glass slide and a coverslip.
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You’ll notice that some particles have sharp edges. These are particles that are within the micro-

scope’s depth of focus. Particles with blurry edges are outside the depth of focus. When analyzing

particle motions from the videos that you record, you will want to work with particles that are

in focus. A particle that is initially in focus may move out of focus at a later time as its vertical

position changes. You’ll also observe some clumps of two or more particles. You’ll want to collect

data from only isolated single particles.

When recording your videos for part 1, you’ll want to ensure that the plane of focus and field of view

are set to be approximately in the centre of the chamber formed by the glass slide and coverslip.

This will help to prevent the inner walls of the chamber from influencing the particle motions.

In order to calibrate distances, you will place a calibration scale beneath the microscope and focus

on the grid. Having an image of the grid at the end of your video will allow you to calibrate

distances in the software that will be used to analyze the particle motion. An example calibration

image is shown in Fig. 2.

Figure 2: Digital photograph of the calibration slide while using the ×40 microscope objective. The
distance between each division is 0.01mm.
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Theory – Part 1

Consider an isolated particle in the suspension. If it is a macroscopic particle (i.e. very large),

then its motion in the x-direction is governed by the equation of motion mẍ = −Γẋ.1 Here, like

in the Millikan oil drop experiment, Γ = 6πηa is the drag coefficient for a spherical particle of

radius a moving through a viscous fluid with dynamic viscosity η. In this case, the time evolution

of the particle’s velocity follows v(t) = v0e
−t/τ , where v0 is the particle’s initial velocity at t = 0

and the time constant τ = m/Γ. This result implies that, for any v0, the particle’s velocity will

exponentially approach zero and eventually come to rest.

If, on the other hand, the particle is microscopic we observe that its velocity does not decay to zero.

The particle remains in constant motion and the direction of this motion is constantly randomized.

This effect is due to the constant collisions that the particle has with the vast number of molecules

that make up the solution. We attempt to model is effect by including a random force FR that

characterizes the complex interactions with the fluid molecules. In this case, the one-dimensional

equation of motion becomes:

mẍ = −Γẋ+ FR, (1)

which is known as the Langevin equation. We assume that FR is independent of the position x of the

particle and, because it is randomly fluctuating, we also assume that it averages to zero: ⟨FR⟩ = 0.

The goal is to use Eq. (1) to determine the average of square of the particle’s displacement ⟨x2⟩
during a time interval t. We choose the square of the displacement because, due to the random

nature of the particle motion, we expect ⟨x⟩ = 0.

Multiplying Eq. (1) by x and reordering the terms results in:

mxẍ+ Γxẋ− xFR = 0 (2)

In the pre-lab assignment, you will use the chain rule to show that xẍ can be rewritten as:

xẍ =
1

2

d2 (x2)

dt2
− ẋ2, (3)

such that Eq. (2) becomes:
m

2

d2 (x2)

dt2
−mẋ2 + Γxẋ− xFR = 0. (4)

1Here, ẋ = dx/dt and ẍ = d2x/dt2.
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Using the chain rule again, we note that:

d (x2)

dt
= 2xẋ. (5)

Therefore, we have:
m

2

d2 (x2)

dt2
−mẋ2 +

Γ

2

d (x2)

dt
− xFR = 0. (6)

We now imagine taking an average of Eq. (6). It is called an ensemble average which is commonly

used in statistical mechanics. In an ensemble average, we imagine preparing many replica systems

with identical initial conditions. We then watch the time-evolution of the system and average the

results from all the replica systems. Using angle brackets to represent the ensemble average, we

have:
m

2

〈
d2 (x2)

dt2

〉
−m

〈
ẋ2
〉
+

Γ

2

〈
d (x2)

dt

〉
− ⟨xFR⟩ = 0. (7)

First, we consider the last term on the left-hand side (lhs) of Eq. (7). Because FR is independent

of position, ⟨xFR⟩ = ⟨x⟩ ⟨FR⟩ = 0 since ⟨FR⟩ = 0. The m⟨ẋ2⟩ term can be related to the particle’s

average kinetic energy ⟨K⟩:
⟨K⟩ = m

2

(
⟨ẋ2⟩+ ⟨ẏ2⟩+ ⟨ż2⟩

)
. (8)

Note, however, that there is nothing to distinguish the x, y, and z directions from one another.

Therefore, ⟨ẋ2⟩ = ⟨ẏ2⟩ = ⟨ż2⟩ such that ⟨ẋ2⟩+⟨ẏ2⟩+⟨ż2⟩ = 3⟨ẋ2⟩. This implies that ⟨K⟩ = 3⟨ẋ2⟩/2.
Finally, from thermodynamics, the internal energy per particle (which is all kinetic energy) of a

monatomic dilute gas is 3kBT/2 where kB is Boltzmann’s constant and T is temperature in Kelvin.

Together, these results imply that m⟨ẋ2⟩ = kBT .

Therefore, Eq. (7) becomes:
m

2

d2⟨x2⟩
dt2

= −Γ

2

d⟨x2⟩
dt

+ kBT, (9)

where the averages have been taken inside the derivatives and the terms have been reordered.

Now, define u = d⟨x2⟩/dt such that:

m

2

du

dt
= −Γ

2
u+ kBT. (10)

In the pre-lab assignment you will show that the solution to Eq. (10) is:

u =
d ⟨x2⟩
dt

= Ce−t/τ +
2kBT

Γ
, (11)

where the time constant τ = m/Γ = m/ (6πηa). In the pre-lab assignment, you will also show that,
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for our experimental conditions, τ is very small. Therefore, for all practical time intervals, t ≫ τ

and the exponential term on the right-hand side (rhs) of Eq. (11) is small compared to 2kBT/Γ. As

a result, we have:
d ⟨x2⟩
dt

≈ 2kBT

Γ
. (12)

Finally, integrating Eq. (12) with respect to time, we have our desired result for the mean displace-

ment of the particle during time interval t:

〈
x2
〉
=

2kBTt

Γ
=

kBTt

3πηa
. (13)

In the Brownian motion images that you will analyze, you will observe particle motion in a 2-D

plane, say the x-y plane. The calculation of ⟨y2⟩ is identical to the calculation we just completed

for ⟨x2⟩ and yields the same result. Therefore, the mean 2-D displacement of the particle in time t

is given by: 〈
∆r2

〉
2D

=
〈
x2
〉
+
〈
y2
〉
=

2kBTt

3πηa
. (14)

We have used the ∆r notation to emphasize that we are interested in the change in position of the

particle during time interval t. In part 1 of this lab, you will determine ⟨∆r2⟩2D of the latex spheres

for different values of t.

Boltzmann’s constant can be expressed in terms of the universal gas constant and Avogadro’s

constant via kB = R/NA such that:

〈
∆r2

〉
2D

=
2RTt

3πNAηa
. (15)

Equation (15) shows that a measurement of ⟨∆r2⟩2D as a function of t should yield a straight line

whose slope can be used to determine an experimental value for NA.
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Pre-lab Assignment

1. (a) By evaluating d (xẋ) /dt, show that:

xẍ =
d

dt
(xẋ)− ẋ2.

(b) Next, by evaluating d (x2) /dt, show that:

xẋ =
1

2

d (x2)

dt

(c) Combine the results from (a) and (b) to show that:

xẍ =
1

2

d2 (x2)

dt2
− ẋ2.

2. Starting from Eq. (10) in the theory section, make the substitution:

w =
Γ

2
u− kBT,

and show that the solution to Eq. (10) is:

u = Ce−t/τ +
2kBT

Γ
,

where C is a constant and τ = m/Γ.

3. For latex spheres of radius a ≈ 0.5 µm and density ρ ≈ 1000 kg/m3, estimate the value of τ . You

may assume a dynamic viscosity of η ≈ 1× 10−3 Pa · s for the saline solution.

6



Figure 3: ToupView settings. Click on the text in the “Camera List” box to open a live video feed.
Change the resolution to 640×480 and, if necessary, adjust the Exposure Time and Gain to achieve
the necessary frame rate.

Procedure – Part 1

� Start by preparing your slide. Place two drops of the particle suspension into the indentation

of a clean slide. Cover the suspension with a clean coverslip without trapping air inside the

particle suspension chamber.

� Place the slide in the slide holder of the microscope. Use the ×40 objective (40/0.65) to view

the particles. Turn on the microscope light, connect the USB camera to the computer and

open ToupView. Click on the camera from the “Camera List” to see a live view of the particle

suspension in ToupView. See Fig. 3

� In order to get a reasonably high frame rate (in frames per second or fps), change the resolution

to 640×480. A frame rate of 15 fps or greater is desirable. If necessary, adjust the illumination

of the suspension using the light below the glass slide and/or adjust the Exposure & Gain

(Fig. 3) to achieve a frame rate > 15 fms.

� Allow the particle suspension to reach a steady state before starting your recording. The

particle motion should be random without any net drift in any one direction. Avoid bumping

the microscope or table. When ready, record your video using the “mp4 (H264)” format. A

recording of approximately 10 minutes should be sufficient.

� The free Tracker Video Analysis and Modeling Tool (https://physlets.org/tracker/) will

be used to analyze the data. Tracker already installed on the computers in SCI 241. Import
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your video into Tacker.

� Start a new “Point Mass” track control using the “Track” menu. See Fig. 4. Hold the shift

button the use left mouse clicks to track the position of a particle as a function of time. As

you click, the video will advance a specified number of frames. You can use the Zoom control

to zoom into the particle to make it easier to track its position. The software will also tabulate

the particle’s coordinates as a function of time. The data in the table can be copied in Excel

(or another spreadsheet) for further processing.

� Use the data to calculate the average displacement of the particle ⟨∆r2⟩2D for the given time

step t. ⟨∆r2⟩2D and t are related by Eq. (15).

� Determine ⟨∆r2⟩2D for many different values of t. This can be done to adjusting the number

of frames Tracker advances the video after each click. To make this adjustment, click on the

number next to the “Advance by N frames” arrow in Fig. 4. Use the data you collect and

Eq. (15) to determine NA from a weight least-squares linear fit.

Theory – Part 2

The goal of the next part of this experiment is to examine how the particle number density n varies

with height within the suspension. Due to the effects of gravity, the number density is expected to

increase as the bottom of the suspension cell shown in Fig. 1 is approached. This experiment was

inspired by Ref. [1]. In that paper, the particle number density is given by:

n(z) = n0 exp

[
−NAV (ρ− ρ0) gz

RT

]
, (16)

where n0 is the particle number density at the bottom of the cell and n(z) is the number density a

height z above the cell’s bottom. V = 4πa3/3 is the volume of a single particle, ρ is the density of

a single latex sphere, ρ0 is the density of the suspending fluid, T is temperature in Kelvin, and g

is the gravitational acceleration. A measurement of n as a function of z can, therefore, be used to

determine NA.

Procedure – Part 2

� Prepare a suspension in the same was as was done for part 1. This time, however, use the

bottle that produces a suspension with a higher density of particles. For this measurement,

it is important that the suspension be allowed to reach equilibrium before taking the mea-

surements. This can take up to 12 hours. You’ll need to prepare your suspension the day

before your lab so that it can settle overnight. Please make suitable arrangements with your

lab instructor or TA.
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Figure 4: ToupView settings. Click on the text in the “Camera List” box to open a live video feed.
Change the resolution to 640×480 and, if necessary, adjust the Exposure Time and Gain to achieve
the necessary frame rate.

� Use ToupView to take a series of photos of the suspension at many different heights above

the bottom of the cell. Use the highest resolution images available. You’ll need to know

the change in height between successive images which cannot be obtained directly from the

microscope. To measure changes in height of the microscope platform, we will use a Starrett

dial indicator (Last Word, Fig. 5) with 0.0005 inch (0.0127 mm) divisions. Please use care

when using the dial indicator. Its total range of motion is only ±0.015 inches (0.38 mm)! You

should be able to measure half a division (0.00025 inches or 6.35 µm).

� Note that, due to water’s refractive index of 1.333, the change of height of the microscope

platform does not correspond directly to the change in observation height within the sus-

pension. If z′ is the height measured using the dial indicator, the observation height in the

suspension is given by z = 1.333z′ [1].
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Figure 5: The Starrett Last Word dial indicator with 0.0005 inch divisions.

� You will need to count the number of particles in each photo. You can count them in any way

you want, but you will need to make a judgment about when to include particles in your count

and when to exclude them (due to being too out of focus). One convenient method for counting

particles is to use ImageJ – a free image processing software (https://imagej.nih.gov/ij/).

To count particles in ImageJ, first open your photo and then select the “Multi-point” tool

shown in Fig. 6(a). Then, simple click on each particle you wish to include in the count.

ImageJ will mark each particle you click on with cross and a number. A partial count of the

particles in an example photo is shown in Fig. 6(b).

� Use you counts and measured heights in combination with Eq. (16) to determine NA from a

weight least-squares linear fit.
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(a)

(b)

Figure 6: (a)The “Multi-point” tool in ImageJ. (b) A partial count of the number of particles in an
image.
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